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Abstract. Control of chaotic vibrations in a simplified model of a spinning spacecraft with a circumferential
nutational damper is achieved using two techniques. The control methods are implemented on a realistic spacecraft
parameter configuration which has been found to exhibit chaotic instability when a sinusoidally varying torque
is applied to the spacecraft for a range of forcing amplitude and frequency. Such a torque, in practice, may arise
in the platform of a dual-spin spacecraft under malfunction of the control system or from an unbalanced rotor or
from vibrations in appendages. Chaotic instabilities arising from these torques could introduce uncertainties and
irregularities into a spacecraft’s attitude and consequently could have disastrous affects on its operation. The two
control methods, recursive proportional feedback (RPF) and continuous delayed feedback, are recently developed
techniques for control of chaotic motion in dynamical systems. Each technique is outlined and the effectiveness
of the two strategies in controlling chaotic motion exhibited by the present system is compared and contrasted.
Numerical simulations are performed and the results are studied by means of time history, phase space, Poincaré
map, Lyapunov characteristic exponents and bifurcation diagrams.
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1. Introduction

A number of investigations into spinning spacecraft stability have been performed in the
recent past after abnormalities were observed in dual-spin spacecraft in practice. Many of
these observed instabilities have been attributed to excitations from structural imperfections in
combination with the inherent nonlinear dynamics of the system. Many researchers, amongst
others [1–3], have investigated the attitude stability and behaviour of a dual-spin spacecraft
due to parametric fluctuations resulting from structural imperfections. The results obtained in
the above studies are of concern to designers since a spacecraft may pass through these insta-
bility regions during rotor spin-up or during a malfunction such as run-down of the momentum
wheel during temporary power loss. However, very little attention has been concentrated on
investigating chaotic instabilities that can arise in a spacecraft system. This paper extends
the understanding of this form of instabilities in spacecraft systems by investigating possible
strategies to quench these instabilities.

Moon [4] describes a large range of simple mechanical and electrical systems that are
known to exhibit chaotic vibrations, however, it has been only recently that chaotic motion
has been investigated in spacecraft configurations. Both Holmes and Marsden [5] and Koiller
[6] have performed analyses on configurations similar to that of a dual-spin satellite using
Melnikov’s method to show the existence of horseshoes. Piper and Kwatny [7] have also
investigated a commonly used momentum exchange spacecraft attitude control configuration
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and have shown the existence of multiple limit cycles and strange attractors for a range of
motor time constants. Gray et al. [8] have also provided analytical results for the prediction of
chaotic motion in a single body spacecraft with a viscous damper during an attitude transition
manoeuvre. These results are of importance to spacecraft designers as any instabilities in the
attitude dynamics of a spacecraft could have disastrous effects on its normal operation. For
example, chaotic motion in the attitude motion of a communication satellite would be seri-
ously detrimental to the high pointing accuracies required by antennae providing the desired
coverage on the earth’s surface. It is thus prudent for designers to avoid the regions of chaotic
instability via parameter design, however, a successful control methodology would allow
designers to use spacecraft parameters (desired for other requirements) that would normally
render the spacecraft susceptible to chaotic instabilities. At present there has been no results
obtained for the control of chaotic instabilities in spacecraft.

Control of chaotic motion is a very new field of research, however, a vast array of dif-
ferent control techniques have been employed, over this decade, to suppress or manipulate
chaotic instabilities. Lindner and Ditto [9] present a comprehensive review of these tech-
niques. Blazejczyk et al. [10] also describe a variety of methods used for the control of chaos
in mechanical systems. The present research uses two methods for the control of chaotic
vibrations in a simplified model of a spinning spacecraft. The first method is a Recursive
Proportional Feedback (RPF) method derived by Rollins et al. [11] and is an extension of
the Occasional Proportional Feedback (OPF) technique. Both these methods are derived from
the renowned model-independent technique proposed by Ott Grebogi and Yorke (OGY) [9].
Hunt [12] and Roy et al. [13] give two examples of the employment of the OPF method in
experimental systems and Parmananda et al. [14] has used the RPF method to control the
dissolution of the anode in an electrochemical cell. The second technique used in this paper
is a continuous Delayed feedback method devised by Pyragas [15, 16]. Both methods require
no prior knowledge of the system dynamics.

For the purpose of the present analysis, a simple model of spinning spacecraft with a
circumferential nutational damper is chosen and no linearisation of the equations of motion
has been performed. Such a model is a simplification of a dual spin spacecraft in that platform
and nonprincipal axis rotations are not considered. A circumferential damper was chosen over
an axial damper to allow simplification of the problem to one plane as well as because of
its effectiveness in operation over a wider range of nutation angles as found by Cochran and
Thompson [17]. Chaotic motion has been previously found in this simplified model when the
spacecraft is subjected to an external periodically varying torque by Meehan and Asokanthan
[18]. Such a torque, in practice, may arise in the platform of a dual-spin spacecraft under
malfunction of the control system causing rotor driver fluctuations and hence periodic torquing
of the platform. A similar situation may also arise in a dual-spin spacecraft during spin-up of
an unbalanced rotor or from vibrations in appendages. Two control methods will be applied
to the system, under the conditions causing chaotic motion, to eliminate instabilities.

This paper first gives a simplified description and formulation of the equations of motion
governing the dynamics of the system. A summary of the results obtained describing the
presence of chaotic instabilities is then described. Also an outline of each control method
and its design implementation is presented. Numerical simulation results are shown and the
effectiveness of each control method on this model is compared and contrasted.
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Figure 1. Spinning spacecraft with internal spring-mass-damper configuration.

2. Equations of Motion and Stability Analysis

The system under investigation consists of a rigid body rotating at angular velocityω with an
internal energy dissipater in the form of a spring-mass-dashpot as illustrated in Figure 1. The
degrees-of-freedom of the system,y andθ describe the displacement of the damper mass and
rotation of the system aboutA (orG), respectively. The damper is centred on the body fixed
X-axis and has a point mass ofm that moves along an axis parallel to theY -axis at a distance
b fromA. The spring constant isk and the dashpot has damping constantc. The system rotates
about its centre of mass at pointG which coincides withA wheny = 0. Note that the position
of A with respect to the motionless centre of massG and the instantaneous moment of inertia
of the system aboutA, vary with the position of the damper mass. The system is considered
to have a total massmT , moment of inertiaI about theZ-axis wheny = 0. The system
is also considered to be subjected to a combination of external torquesM, composed of an
excitational time varying torqueME and a control torqueMC such thatM = ME +MC .

The equations of motion for the system may be obtained using Lagrange’s Equations with
dissipation. Grubin [19] has derived similar equations of motion for “A Translating Point
Mass on a Vehicle Moving in Two Dimensions” using the generalised angular momentum
equation derived by himself previously [20]. A similar generalisation of the kinetic energy
equation has been derived by Meehan and Asokanthan [21] which allows the kinetic energy
of a system of particles to be calculated with respect to an arbitrary frame of reference in
the system, having an arbitrary motion. Meehan and Asokanthan [18, 21] have derived the
equations for this model previously in dimensional form. These equations may be transformed
to a nondimensional form using the following dimensionless quantities:

τ = �t, ŷ = (1− µ)y
b

, ω̂ = ω

�
, Î = (1− µ)I

mb2
, ĉ = c

m(1− µ)� ,

k̂ = k

m(1− µ)�2
, M̂ = (1− µ)M

mb2�2
, Ê = (1− µ)E

mb2�2
, µ = m

mT
, (1)

where� andτ denote the frequency of the time varying torqueM and the nondimensional
time, respectively, whileE denotes the total mechanical energy of the system. The super-
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script (ˆ) denotes a nondimensional parameter. Using Equations (1), the dimensionless total
mechanical energy of the system may be derived as

Ê = 1

2
[Î + ŷ2]ω̂2+ 1

2
ŷ′2 + 1

2
k̂ŷ2 − ŷ′ω̂. (2)

The dimensionless equations of motion are also derived as

[Î + ŷ2]ω̂′ + 2ŷŷ′ω̂ − ŷ′′ = M̂(τ), (3)

ŷ′′ + ĉŷ′ + k̂ŷ − ω̂2ŷ − ω̂′ = 0, (4)

where( )′ denotes differentiation with respect to the dimensionless timeτ . Equation (3) is the
simplified Euler’s equation representing the dynamics of a spinning spacecraft with circum-
ferential nutational damper. The coefficient ofω̂′ in Equation (3) represents the instantaneous
moment of inertia of the system aboutG while the terms involvingŷ′ and ŷ′′ represent the
moments arising from the Coriolis and other inertia forces with respect toG. Equation (4)
represents the acceleration-force balance of the spring mass damper system where the last
two terms characterise the effects of the centrifugal and angular accelerations, respectively.
It may be noted that these two equations completely describe the system dynamics. In this
case, the system is of order five sinceM̂ is assumed to vary periodically with time and state
equation described bŷθ ′ = ω̂ is trivial. It may also be observed that Equations (3) and (4)
are coupled through three nonlinear terms resulting from the dynamic effects of the damper
point mass. The subsequent analysis will investigate the dynamical response of this system to
a combination of external torqueŝM, composed of an excitational time varying torqueM̂E

and a control torqueM̂C such thatM̂ = M̂E + M̂C. To gain an initial understanding of the
dynamical behaviour, a stability analysis is performed.

The stability of the system was examined by considering the equations of motion (3) and
(4). These equations may be rearranged and transformed into three nonlinear state equations

X′1 = X2,

X′2 = β(X1)[α(X1)χ(X)+ δ(X)],
X′3 = β(X1)[χ(X)+ δ(X)], (5)

where

X = [X1 X2 X3]T = [ŷ ŷ′ ω̂]T , α(X1) = (Î +X2
1), β(X1) = (Î +X2

1 − 1)−1,

χ(X) = −ĉX2+ (X2
3 − k̂)X1, δ(X) = M̂ − 2X1X2X3.

Note that the state equation described byθ̂ ′ = ω̂ is trivial in this case. The critical points for
the homogenous system were then found by setting[ŷ′ ŷ′′ ω̂′]T = [0 0 0]T andM̂ = 0 to
obtain three lines of equilibrium described by

[ŷ ω̂]T = [0 ω̄]T ,
[
ȳ

√
k̂
]T
,
[
ȳ −

√
k̂
]T
, (6)

whereω̄ and ȳ indicate infinite sets of real values or lines in equilibrium phase space. Once
the initial conditions of the system are prescribed these lines reduce to a finite number of
equilibrium points. The equilibrium configuration thus depends on the initial conditions of
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the system. The stability of these equilibrium lines has been investigated previously by Mee-
han and Asokanthan [18, 21]. The stability analysis revealed that the first equilibrium line
described by[ŷ ω̂]T = [0 ω̄]T is stable if

k̂ − ω̄2 > 0 and Î − 1> 0 (7)

and the other two equilibrium lines described by[ŷ ω̂]T =
[
ȳ ±

√
k̂
]T

are stable if

Î − 1+ ȳ2 > 0. (8)

It may be noted that for any given set of initial conditions, the equilibrium linesω̄ and ȳ
described in Equation (6) would reduce to the possible critical pointsω̄∗ and±ȳ∗, respectively,
due to the symmetry of displacement of the mass damper and rotation of the body, whereω̄∗
and ȳ∗ indicate single values. The relationship of the equilibrium configuration with initial
conditions may be derived considering conservation of angular momentum of the system as
described in Appendix A. From this analysis the sign of the first of these equilibrium pointsω̄∗
is found to be directly dependent on the sign of the initial angular momentum of the system. It
may also be noted that the stability of the equilibrium points in the direction of the equilibrium
line may be determined to be stable for the conditions described by Equations (7) and (8) using
Lyapunov’s direct method, with the total mechanical energy of the system as a Lyapunov
function.

It is also noticed that the stability configuration of the system may be determined by the
angular momentum and initial energy of the system. Thus if the system has no external torque
applied (M̂ = 0), it is dissipative and the behaviour of the system can be predicted using
Equations (2), (6–8). For initial conditions such that the initial angular momentum in the
system is less than that described by the system having only an angular rotation ofω̂2 = k̂ the
system is attracted to the stable condition defined by the first equilibrium state in Equation (6)
of a constant angular velocitȳω and no damper mass deflection. Under these conditions, by
considering Equation (2), there is not enough energy within the system for the latter two equi-
librium lines described by Equation (6)to be approached in phase space since the damper acts
to dissipate energy always. The energy associated with any initial damper mass displacement
is partly dissipated in the damper and also transferred to rigid body rotational energy via an
increase inω̂ so as to conserve total angular momentum. For initial conditions such that the
angular momentum in the system is greater than that described by the system having only an
angular rotation of̂ω2 = k̂, the first stability condition described by Equation (7) is violated,
so that either one of the latter two equilibrium lines described by Equation (6) become the
dominant attractor depending on the sign or direction ofω̄∗. In this case, any initial rigid
body rotational energy that is lost is partly dissipated and partly stored in a displacement
of the damper mass̄y∗ such that angular momentum is conserved again. In each case, the
system acts in such a way as to conserve angular momentum but minimise final energy. Such
a heuristic argument is similar to that which describes why a semirigid body with internal
energy dissipation is stable only when spinning about its major axis [22].

The symmetrical properties of the spring mass damper allow the possibility of two sta-
ble equilibrium points; in this case corresponding to positive and negative displacements of
the damper mass±ȳ∗. This characteristic of two stable equilibrium points is similar to that
described by a two-well potential problem. The system will be attracted to either one of the
equilibrium points depending on the initial conditions and there will be a region in phase
space where this dependence will be highly sensitive to small changes. This characteristic
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can become significant to the dynamics when an external sinusoidal torque is applied to the
system. As has been found with many systems of this type, Meehan and Asokanthan [21]
found an external sinusoidal torque applied to the body about a perpendicular axis throughA,
induces the system to jump chaotically between the two stable equilibrium points. Evidence
is also presented, indicating that the onset of chaotic motion was characterised by period
doubling as well as intermittency. These results are of importance to spacecraft designers as
any instabilities in the attitude dynamics of a spacecraft could have disastrous affects on its
normal operation. For example, chaotic motion in the attitude motion of a communication
satellite would be seriously detrimental to the high pointing accuracies required by antennas
providing the desired coverage on the earth’s surface. It is thus prudent for designers to avoid
the regions of chaotic instability via parameter design. However, a successful control method-
ology would allow designers to use spacecraft parameters (desired for other requirements) that
would normally render the spacecraft susceptible to chaotic instabilities.

3. Control Methods

The control methods used in this paper are model independent methods that exploit the uni-
versal characteristics of chaotic vibrations. Owing to this property, the methods employed
are able to detect the presence of chaotic motion, switch on the control when required and
switch off once it is no longer required. For this system, the aim is to stabilise the desired
state[ŷ ŷ′ ω̂]T = [0 0 ωref]T , which corresponds physically to the desired operation
conditions for a satellite of constant rotation rate and no nutation or precession. In order to
achieve simplicity in design of the control mechanism, the angular velocity of the spacecraftω̂

is chosen as the sensor variable and the control actuator is considered to be a torque applied to
the spacecraftM̂C. Such a control torque could be considered to be applied using thrusters or
an external rotor in a dual-spin satellite. Thus, when the controlled system is being perturbed
by an excitational periodically varying torque, it is considered to be subjected a combination
of applied torquesM̂ = M̂E + M̂C about the spinning axis. Due to practical constraints a
torque limitation ofMmax is chosen for the control actuator.

3.1. CONTINUOUS DELAYED FEEDBACK CONTROL

The first control method implemented on the present model was first proposed by Pyragas as
a method of time continuous control. This method is based on the construction of a special
form of a time continuous perturbation which does not change the form of a desired unstable
periodic orbit or fixed point. The control may be applied to any number of the system state
space equations in the form:

Ẋ = F(X, p)+ ûiC(τ),

whereẊ = F(X, p) represents the state space equations of motion,ûi is a unit vector in the
direction of theith variable and the control signal is sensitive to theith variable in the form

C(τ) = K[xi(τ −1)− xi(τ)],
where1 is the delay time andxi is theith variable. Note thatC(τ) = 0 whenxi(τ −1) =
xi(τ). This occurs when the system is settled on a limit cycle of period1. Control design is
performed simply via adjustment of the delay1 to the period of the desired unstable periodic
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Figure 2. Block diagram of control methods: (a) delayed feedback and (b) recursive proportional feedback (RPF).

orbit and weightK of the feedback. Recently, Barrett [23] has presented analytical results
describing a method of determining the required feedback gainK. It may be noted that only
sufficient conditions for stability are employed using this method and in practice adjustment
of the feedbackK is required for more effective controller performance. Typically,K is set
low and gradually increased until desired stabilisation occurs [15, 16].

For the present model, a suitable choice for control parameters isxi ≡ ω̂ such that after
introducing a torque limitationMmax the control law may be given by

M̂C(τ) =


C(τ) |M̂C(τ)| < Mmax

Mmax, M̂C(τ) > Mmax

−Mmax, M̂C(τ) < −Mmax

 , C(τ) = K[ω̂(τ −1)− ω̂(τ )].

The block diagram of this system is seen in Figure 2a. For the present model, the aim is to
stabilise a fixed point so that in practice the delay1 is chosen to be smaller than the forcing
period. Also the initial control actuation conditions described by

|ω̂| < Î k̂

ĥG
and ŷŷ′ < 0 (9)

are employed so that the equilibrium state described by[ŷ ŷ′ ω̂]T = [0 0 ω̄∗]T is stabilised

rather than a limit cycle about the equilibrium states[ŷ ŷ′ ω̂]T =
[
±ȳ∗ 0 ±

√
k̂
]T

. The

first condition described in Equation (9) is devised using the first stability condition described
by Equation (7) and the result describing the equilibrium point,ω̄∗, derived in Appendix A.
The second condition described in Equation (8) ensures that the control is activated when the
movement of the damper mass,ŷ, is towards the desired fixed point positionŷ = 0.

3.2. RPF CONTROL

The second method, a Recursive Proportional Feedback (RPF) is an extension of the Oc-
casional Proportional Feedback (OPF) technique [12]. This method has been derived from
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the renowned technique proposed by Ott Grebogi and Yorke (OGY) [9] which is model-
independent and goal-oriented. Like the OPF method, the RPF is useful in highly dissipative
systems where dynamics exhibits a nearly one-dimensional return map. RPF has an extra
derivative-like term as compared to OPF that adds greater stability for control. The method,
however, can only be applied to discrete mappings of a dynamical system.

The control method provides small perturbations to a system parameter which is propor-
tional to the error from the desired output of a sensor variable for the system. For a discrete
mapping, the control law for thenth iterate is given by

δpn =
{
K1δxn +K2δpn−1 |K1δxn| ≤ δpmax

0 |K1δxn| > δpmax

}
, (10)

whereδpn defined aspn−p0 is the relative control parameter perturbation whilepn,p0 denote
the control parameter for thenth iterate and the uncontrolled value of the control parameter,
respectively. The relative sensor displacement,δxn from desired fixed pointxf is defined as
xn − xf wherexn signifies the sensor value at thenth iterate. Also,|K1δxn| ≤ δpmax defines a
region or “window” in phase space around the desired fixed point where linear approximation
is valid andK2δpn−1 is a “derivative-like” term which can add stability and optimise the
control method.

Generally, the mapping frequency is chosen to be the same as an external forcing frequency
or a natural frequency of the system. Rollins et al. [11] provides a method of determination
of feedback gainsK1 andK2 via experimentation and measurement from one-dimensional
return maps of the controlled system. This method assumes linear behaviour of the system
about the fixed point and is valid for small control perturbations. In practice, adjustment of the
two feedback gainsK1 andK2 as well as adjustment of the “window” sizeδpmax is required
for more effective controller performance. Typically, the procedure involves tuning gainsK1

andK2 with a small “window” δpmax, then gradually increasing the size and adjusting the
gains for optimal controller performance.

For the present model a suitable choice for control parameters is

pn ≡ M̂C〈n〉, p0 ≡ 0, xn ≡ ω̂〈n〉, xf ≡ ωref,

such that

δpn ≡ M̂C〈n〉, δxn ≡ ω̂〈n〉 − ωref and δpmax≡ Mmax,

where( )〈n〉 is thenth map iterate. Therefore, the control law may be given by

M̂C〈n〉 =
{
K1(ω̂〈n〉 − ωref+K2M̂C〈n−1〉 |M̂C〈n〉| ≤ Mmax

0 |M̂C〈n〉| > Mmax

}
.

The block diagram of this system is seen in Figure 2b. In practice, the control design is
implemented on a continuous system by holding the control constant for each period of the
excitation torque.

4. Numerical Simulations

In order to investigate the effect of the control methods upon the chaotic dynamics of the
system, numerical integration of Equations (2) and (3) was performed while the system is



www.manaraa.com

Control of Chaotic Motion in a Spinning Spacecraft277

subjected to a excitational time varying torqueM̂E. All numerical simulations were performed
on a Sun SPARC Station IPX using DYNAMICS, written by Nusse and Yorke. The fourth
and fifth order Runge–Kutta routine was used for numerical integration. Various tools were
used to examine the effect of the control methods upon nonlinear phenomena including the
time history, bifurcation diagrams of Poincaré maps and Lyapunov Exponents. The Lyapunov
spectrum of exponents was calculated using the algorithm derived by Wolf et al. [24] and
iterated at least 1000 forcing periods. Renormalisation was performed at 1/2 forcing period.

The equations of motion in the state space form of Equations (4) were used for the in-
tegration with the combination of external torques described byM̂ = M̂E + M̂C where
M̂E = M̂E cosτ . The parameters of the spinning spacecraft with circumferential nutational
damper were chosen to be similar to that of INTELSAT II or III beingm = 0.3 kg,b = 1 m,
k = 0.2 N/m,µ = 0.01, I = 100 kg m2, and the numerical integrations began from the
initial conditions described by[y ẏ ω]T = [0 0 0.821 rad/s]T . The damping constant
and excitation torque frequency was chosen to bec = 0.002 Ns/m and� = 0.05 rad/s,
respectively. The nondimensional parameters for the system are thus given byĉ = 0.13468,
k̂ = 269.36 andÎ = 330 and the numerical integrations began from the initial conditions
described by[ŷ ŷ′ ω̂]T = [0 0 16.42]T . For these parameter values it is noted from the
conditions described by Equations (14) and (15) and the results obtained in Appendix A that
the equilibrium points[ŷ ω̂]T = [0 ω̄∗]T are stable for−16.33< ω̂ < 16.33 while the other
equilibrium points[ŷ ω̂]T = [±0.396 ±16.4122]T are always stable.

Firstly, the characteristic nonlinear phenomena in the open loop system were investigated
primarily while varying the amplitude of the excitation torque,M̂E. An intermittent route to
chaos was found for the system using the parameters above. The intervals of intermittent chaos
was found to increase with excitation torque amplitude and atM̂E = 1.584 fully developed
chaos is present as seen in Figures 3a and 3b, respectively, via phase space and Poincaré
map. The time history and power spectrum also confirmed these results. The characteristic
Lyapunov exponents were calculated to be[0.94 0.0 0.0 −1.9] × 10−2 with the positive
exponent confirming chaotic motion. The correlation dimension of the system was calculated
from the Poincaré map to beDC = 2.482. The closeup portion of the Poincaré map shown
in Figure 3b shows a one-dimensional map behaviour, supporting the use of the RPF method
for control of the chaotic behaviour. Consequently, it was of interest to investigate the effec-
tiveness of the two control methods on the system while it is subjected to the same excitation
torque amplitude,M̂E = 1.584.

Figures 4 to 6 show the effect of each control method via time histories of the control
torque, damper mass position and angular velocity of the body. In each case, the control loop
is manually closed after a short interval as indicated on the diagrams so that a comparison
of the open loop and closed loop systems can be made. The control torque limitation is also
chosen in each case to beMmax= 103.

Figures 4a–c show the effect of applying the delayed feedback method to system while
it is behaving chaotically. Control is achieved via adjustment of the control parameters as
described in Section 3.1 toK = 3.3× 103 and1 = 0.25. A large control torque is activated
almost immediately after the control loop is closed. The control is effective in eliminating the
large amplitude instability down to a small oscillation about a constant angular velocity as
seen in Figure 4c.

Figures 5a–c show the effectiveness of the RPF control method under the same conditions.
The control parameters are tuned as described in Section 3.2 to beK1 = 52.8 andK2 = 0.02.
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Figure 3. Numerical simulation for an excitational torque amplitude of showing chaotic motion via (a) phase
space and (b) Poincaré map.

For comparison with the continuous delayed feedback method, the desired reference angular
velocity is chosen to beωref = 16.41. In comparison with the delayed feedback method, the
control torque amplitude is an order of magnitude smaller; however, the amplitude of the final
oscillation in angular velocity is larger. Optimisation of control parameters can decrease this
amplitude however the discreteness of the control method is a limitation in the reduction of
this final amplitude.

Figures 6a–c show the effectiveness of the RPF control method under the same conditions
but with the desired reference angular velocity chosen to beωref = 4. These conditions
represent a large decrease in angular velocity from initial conditions as required during despin
of a dual-spin spacecraft. Initially, a much larger control torque amplitude is required, when
compared to the previous cases, since the desired final state requires a change in angular mo-
mentum. The method is seen to be effective in eliminating the chaotic instability and reaching
the desired final state quickly.

To test the robustness of each control technique, the excitational torque amplitude was
varied and a bifurcation diagram of the Lyapunov spectrum of the system was obtained for the
open loop and closed loop cases. Figures 7a–c illustrate these results. The open loop case is
depicted in Figure 7a. Chaotic motion, indicated by a positive maximal Lyapunov exponent,
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Figure 4. Numerical simulation for an excitational torque amplitude of using delayed feedback showing elim-
ination of chaotic motion via time histories of (a) control torque, (b) damper displacement, and (c) angular
velocity.

is present for excitational torque amplitudesM̂E > 1.33. The uncertainty in the Lyapunov
exponents is related to the intermittent nature of the chaotic behaviour. The closed loop results
for the delayed feedback and RPF methods are shown in Figures 7b and 7c, respectively. In
each case, the control parameters were chosen to be the same as previously mentioned values.
The maximal Lyapunov exponent is reduced to zero for the same range of excitational torque
amplitude as the open loop case indicating that the chaotic instability has been quenched in
both cases. The zero maximal Lyapunov exponent obtained at the fixed point is due to the zero
eigenvalue with eigenvector in the direction of the equilibrium lineω̄. Bifurcation diagrams
of time history confirmed that the desired equilibrium point was stabilised in each case.

Although both control methods were successful in eliminating the chaotic instabilities in
the present model for a range of excitation torque amplitudes a number of advantages and
limitations were noticed. The delayed feedback method was seen to be more effective in
suppressing the resultant oscillations in angular velocity. This is primarily due to the con-
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Figure 5. Numerical simulation for an excitational torque amplitude of using recursive proportional feedback
(RPF) and showing elimination of chaotic motion via time histories of (a) control torque, (b) damper displacement,
and (c) angular velocity.

tinuous nature of the method. The discrete nature of the RPF method could lead to some other
serious limitations. As has been mentioned by Blazejczyk et al. [10], this method can only
stabilise those periodic orbits whose maximal Lyapunov exponent is small compared to the
reciprocal of the time interval between the parameter changes. Since the corrections of the
control torque are rare and small, any noise fluctuation leads to occasional outbursts of the
system into a region far from the desired periodic orbit. However, the RPF method is simple
in design, requiring only one sensor, low control torques and would be ideal for use on a
spacecraft configuration with torque thrusters as actuators. The method also has the added
flexibility over the delayed feedback method of control to any desired angular velocityωref. In
contrast, the delayed feedback method requires sensor input from three state variables due to
required initial actuation conditions and the final angular velocity is determined by the total
angular momentum of the system. The continuous nature of the method would require the use
of an external rotor or momentum wheel for torque actuation rather than thrusters. In practice,



www.manaraa.com

Control of Chaotic Motion in a Spinning Spacecraft281

Figure 6. Numerical simulation for an excitational torque amplitude of using recursive proportional feedback
(RPF) and showing elimination of chaotic motion via time histories of (a) control torque, (b) damper displacement,
and (c) angular velocity.

both techniques would be simple to implement on a spacecraft as they require very little or no
prior knowledge of the system dynamics.

5. Conclusions

Numerical simulations have shown the effectiveness of two control techniques in eliminating
chaotic instabilities in a spinning spacecraft with internal energy dissipation when it is per-
turbed by an external periodically varying torque. A typical spacecraft parameter configuration
is investigated and is found to exhibit chaotic motion for a range of rotor torque perturbation
amplitude and frequency. A similar situation, in practice, may arise in the platform of a dual-
spin spacecraft under malfunction of the control system or during spin-up of an unbalanced
rotor or due to appendage vibrations. The control techniques are then successfully employed
to eliminate the instability. The robustness of each technique is shown for a range of excitation
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Figure 7. Bifurcation diagrams of Lyapunov spectrum of exponents for (a) open loop system, (b) closed loop
system with delayed feedback, and (c) closed loop system with recursive proportional feedback (RPF).

torque amplitudes. From a practical point of view, chaotic instabilities could introduce uncer-
tainties and irregularities into a spacecraft’s attitude and subsequently could have disastrous
affects on its operation. It is thus important for spacecraft designers to be able to avoid these
instabilities by employing the control techniques investigated in this paper. Each technique
is outlined and the effectiveness on this model compared and contrasted. In practice, both
techniques would be simple to implement on a spacecraft as they require very little or no prior
knowledge of the system dynamics.
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Appendix A: Derivation of Equilibrium Points

The total angular momentum of the system about the centre of massG is given by

hG = [I +m(1− µ)y2]ω −mbẏ.
This may be expressed in nondimensional form as

ĥG = (Î + ŷ2)ω̂ − ŷ′, where ĥG = (1− µ)hG
mb2�

.

For the condition of no external torque on the system, the principle of conservation of angular
momentum may be applied in the form

ĥGi = ĥGf ,
whereĥGi and ĥGf are the initial and final angular momenta of the system, respectively. By
substituting the final conditions described by the equilibrium point[ŷ ω̂]T = [0 ω̄∗]T , the
above equation yields

ω̄∗ = ĥGi

Î
.

This result reveals that for this equilibrium point, the sign or direction of the final angular
velocity of the system,̄ω∗, is the same as the sign of the initial angular momentumhGi. For

the final conditions described by the equilibrium points[ŷ ω̂]T =
[
ȳ∗ ±

√
k̂
]T

, the above

equation yields

±ȳ∗ = ±
√√√√ ĥGi

±
√
k̂
− Î .

This result also reveals that for these equilibrium points the sign or direction of the final

angular velocity of the system±
√
k̂ must be of the same sign as that of the initial angular

momentumĥGi in order that a real value for±ȳ∗ may be obtained.
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